Synthesis of Pt nanopetals on highly ordered silicon nanocones for enhanced methanol electrooxidation activity.

نویسندگان

  • Jitendra N Tiwari
  • Rajanish N Tiwari
  • Kun-Lin Lin
چکیده

Platinum (Pt) nanopetals were electrodeposited on highly ordered silicon nanocones (SiNCs) and explored as the electrocatalyst for methanol oxidation reaction (MOR) for direct methanol fuel cells applications. Highly ordered SiNCs array fabricated using the porous anodic aluminum oxide as the template had a high surface area. Well-dispersed Pt nanopetals possessing high electrocatalytic surface area was synthesized by pulse-electrodeposition on the SiNCs. Pt nanopetals loaded on highly ordered SiNC support exhibited very good catalytic activity for MOR and a high tolerance against CO poisoning, as compared to Pt nanoflowers/flat Si, Pt nanoparticles/flat Si, and many previously reported works. The abundance of a large surface area for facile transport of methanol, SiO(2) sites in the vicinity of the SiNCs, as well as less contact area between the Pt nanopetals catalyst and SiNCs are suggested to be the major factors enhancing the electrocatalytic performance of the Pt nanopetal/SiNC electrode. Moreover, we believe this new nanostructure (Pt nanopetals/SiNCs) will enable many new advances in nanotechnology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile synthesis of continuous Pt island networks and their electrochemical properties for methanol electrooxidation.

A two-dimensional continuous Pt island network was successfully synthesized by pulse-potentiostatic electrodeposition on a flat silicon substrate, which showed markedly enhanced catalytic activity toward methanol electrooxidation and high CO tolerance, probably due to the synergistic effect of the Pt island catalyst and surrounding SiO(2) surface layer.

متن کامل

Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells

Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activit...

متن کامل

Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media

Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...

متن کامل

Fabrication and Evaluation of Pt/M (M= Co, Fe) Chitosan Supported Catalysts for Methanol Electrooxidation: Application in Direct Alcohol Fuel Cell

In this work, Pt, Fe and Co nanoparticles were prepared by chemical reduction of the metal salts in chitosan as the support. NaBH4 was used as the reducing agent Pt-Fe, Pt-Co and Pt-Fe-Co-chitosan nanocomposites were synthesized and characterized by UV–Vis spectra and Transmission electron microscopy images. GC/Pt-chitosan, GC/Pt-Co-chitosan, GC/Pt-Fe-chitosan and GC/Pt-Co-Fe-chitosan electrode...

متن کامل

Enhanced Catalytic Activity of Pt-NdFeO3 Nanoparticles Supported on Polyaniline-Chitosan Composite Towards Methanol Electro-Oxidation Reaction

In this work, NdFeO3 nanoparticles were synthesized through a simple co-precipitation method. The formation of NdFeO3 particles was verified by X-ray powder diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy analysis. Polyaniline and chitosan were employed as proper support for production of metal nanoparticles. Novel Pt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 2 8  شماره 

صفحات  -

تاریخ انتشار 2010